Mineos新模型运行

试运行minos_bran.f

错误示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
(base) [shizhiyuan@localhost mineos-1.0.0.rbh]$ ./minos_bran
input model file:
/DEMO/models/CPacific.txt
/DEMO/models/CPacific.txt
output file:
CP_S
CP_S
At line 400 of file minos_bran.f (unit = 7, file = 'fort.7')
Fortran runtime error: End of file

Error termination. Backtrace:
#0 0x7f5d66f41171 in ???
#1 0x7f5d66f41d19 in ???
#2 0x7f5d66f42521 in ???
#3 0x7f5d6714a12b in ???
#4 0x7f5d6714a722 in ???
#5 0x7f5d6714729b in ???
#6 0x7f5d6714be34 in ???
#7 0x7f5d6714cca4 in ???
#8 0x7f5d67149bb4 in ???
#9 0x410ded in ???
#10 0x41221c in ???
#11 0x400c5c in ???
#12 0x7f5d663bcd84 in ???
#13 0x400c8d in ???

这里出现了报错,原因是输入模型文件的时候路径需要特定的格式,如下是正确的运行:

正确示例

这里试运行NRussia模型,设置文件夹为DEMO4。

运行内容是生成S振型的文件。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(base) [shizhiyuan@localhost DEMO4]$ time minos_bran
input model file:
../models/NRussia.txt
../models/NRussia.txt
output file:
NRussia_S
NRussia_S
eigenfunction file (output):
eNRussia_S
eNRussia_S
enter eps and wgrav
1e-10 10
1.0000000000000000E-010 10.000000000000000
enter jcom (1=rad;2=tor;3=sph;4=ictor)
3
3
enter lmin,lmax,wmin,wmax,nmin,nmax
1 6000 0.0 166.0 0 0
1 6000 0.0000000000000000 166.00000000000000 0 0

real 1m13.243s
user 0m1.250s
sys 0m0.006s

解释

正确示例中已经cd到DEMO文件夹下,此时需要退出到前一个文件夹,才能进入到models文件夹。因此,路径为:
../models/NRussia.txt
这样运行实测不会出现错误。但是之前运行是在外部文件夹下,理应直接/DEMO……这样是没有问题的。但是实测不行,也不知道为什么。目前在DEMO新建文件夹使用没有问题,而且这样能够区分不同的DEMO。

生成T振型的文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(base) [shizhiyuan@localhost DEMO4]$ time minos_bran
input model file:
../models/NRussia.txt
../models/NRussia.txt
output file:
NRussia_T
NRussia_T
eigenfunction file (output):
eNRussia_T
eNRussia_T
enter eps and wgrav
1.0e-10 1
1.0000000000000000E-010 1.0000000000000000
enter jcom (1=rad;2=tor;3=sph;4=ictor)
2
2
enter lmin,lmax,wmin,wmax,nmin,nmax
1 6000 0.0 166.0 0 0
1 6000 0.0000000000000000 166.00000000000000 0 0

real 1m13.767s
user 0m0.248s
sys 0m0.005s

运行eigcon

S振型的相关文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
(base) [shizhiyuan@localhost DEMO4]$ time eigcon
============= Program eigcon ====================
spheroidals (3) or toroidals (2) or radial (1) or
inner core toroidals (4) modes
3
3
enter name of model file
../models/NRussia.txt
../models/NRussia.txt
enter max depth [km] :
1000
1000.00000
enter name of minos_bran output text file
NRussia_S
NRussia_S
minos_bran output binary unformatted file name
eNRussia_S
eNRussia_S
enter path/dbase_name or dbase_name to store eigenfunctions:
test_S
test_S
====================================================
eigcon: n,nstart,nrad = 260 119 142

real 1m3.563s
user 0m0.041s
sys 0m0.008s

T振型相关

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
(base) [shizhiyuan@localhost DEMO4]$ time eigcon
============= Program eigcon ====================
spheroidals (3) or toroidals (2) or radial (1) or
inner core toroidals (4) modes
2
2
enter name of model file
../models/NRussia.txt
../models/NRussia.txt
enter max depth [km] :
1000
1000.00000
enter name of minos_bran output text file
NRussia_T
NRussia_T
minos_bran output binary unformatted file name
eNRussia_T
eNRussia_T
enter path/dbase_name or dbase_name to store eigenfunctions:
test_T
test_T
====================================================
eigcon: n,nstart,nrad = 260 119 142

real 1m9.287s
user 0m0.021s
sys 0m0.004s

green运行

此处复制了DEMO3的short.site;short.sitechan;china_cmt_event文件;db_list文件。这四个文件需要预先编辑完成。关于这四个文件如何编辑将在其他地方讲述,目前未完成。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
(base) [shizhiyuan@localhost DEMO4]$ time green
============= Program green ====================
enter path to db with sta & stachan:
short
short
enter name of file within list of nmodes db:
db_list
db_list
enter input CMT file name:
china_cmt_event
china_cmt_event
min and max frequencies to be considered (mHz) :
10 260
10.0000000 260.000000
enter # pts in greens fns .le. 30000 :
8000
8000
enter Green functions output db file name:
green
green
====================================================
green: Event: B011400F 2000 14 23:37:10.800 lat = 25.390, lon = 101.400
green: source depth = 33.0 km
green: step = 1.000 sec, nsamples = 8000
green: # sph. modes in band = 1918 must be .le. 300000
green: # tor. modes in band = 1712 must be .le. 300000
green: Input dbname : short
green: Station: ALE 82.5033 -62.3500 , Channels: 3
green: Channel: # 1 ALE LHZ 0.00000000 0.00000000
green: Channel: # 2 ALE LHN 0.00000000 90.0000000
green: Channel: # 3 ALE LHE 90.0000000 90.0000000
green: Epicentral Distance : 72.020
green: Azimuth of Source : 15.433
green: 1 ALE LHZ 2000 14 23:37:10.800 1.000 48000
green: 2 ALE LHN 2000 14 23:37:10.800 1.000 48000
green: 3 ALE LHE 2000 14 23:37:10.800 1.000 48000
green: Station: ANMO 34.9502 -106.4602 , Channels: 3
green: Channel: # 1 ANMO LHZ 0.00000000 0.00000000
green: Channel: # 2 ANMO LH2 10.0000000 90.0000000
green: Channel: # 3 ANMO LH1 280.000000 90.0000000
green: Epicentral Distance : 114.439
green: Azimuth of Source : -27.665
green: 4 ANMO LHZ 2000 14 23:37:10.800 1.000 48000
green: 5 ANMO LH2 2000 14 23:37:10.800 1.000 48000
green: 6 ANMO LH1 2000 14 23:37:10.800 1.000 48000
green: Station: BAK 35.3441 -119.1043 , Channels: 3
green: Channel: # 1 BAK BHZ 0.00000000 0.00000000
green: Channel: # 2 BAK BHN 0.00000000 90.0000000
green: Channel: # 3 BAK BHE 90.0000000 90.0000000
green: Epicentral Distance : 108.462
green: Azimuth of Source : -38.270
green: 7 BAK BHZ 2000 14 23:37:10.800 1.000 48000
green: 8 BAK BHN 2000 14 23:37:10.800 1.000 48000
green: 9 BAK BHE 2000 14 23:37:10.800 1.000 48000
green: Station: BDFB -15.6418 -48.0148 , Channels: 3
green: Channel: # 1 BDFB LHZ 0.00000000 0.00000000
green: Channel: # 2 BDFB LHN 0.00000000 90.0000000
green: Channel: # 3 BDFB LHE 90.0000000 90.0000000
green: Epicentral Distance : 149.822
green: Azimuth of Source : 66.283
green: 10 BDFB LHZ 2000 14 23:37:10.800 1.000 48000
green: 11 BDFB LHN 2000 14 23:37:10.800 1.000 48000
green: 12 BDFB LHE 2000 14 23:37:10.800 1.000 48000
green: Station: BILL 68.0651 166.4524 , Channels: 3
green: Channel: # 1 BILL LHZ 0.00000000 0.00000000
green: Channel: # 2 BILL LHN 0.00000000 90.0000000
green: Channel: # 3 BILL LHE 90.0000000 90.0000000
green: Epicentral Distance : 57.417
green: Azimuth of Source : -103.266
green: 13 BILL LHZ 2000 14 23:37:10.800 1.000 48000
green: 14 BILL LHN 2000 14 23:37:10.800 1.000 48000
green: 15 BILL LHE 2000 14 23:37:10.800 1.000 48000
green: Station: BJT 40.0183 116.1679 , Channels: 3
green: Channel: # 1 BJT LHZ 0.00000000 0.00000000
green: Channel: # 2 BJT LHN 0.00000000 90.0000000
green: Channel: # 3 BJT LHE 90.0000000 90.0000000
green: Epicentral Distance : 19.123
green: Azimuth of Source : -135.267
green: 16 BJT LHZ 2000 14 23:37:10.800 1.000 48000
green: 17 BJT LHN 2000 14 23:37:10.800 1.000 48000
green: 18 BJT LHE 2000 14 23:37:10.800 1.000 48000
green: Station: BRVK 53.0581 70.2828 , Channels: 3
green: Channel: # 1 BRVK LHZ 0.00000000 0.00000000
green: Channel: # 2 BRVK LHN 0.00000000 90.0000000
green: Channel: # 3 BRVK LHE 90.0000000 90.0000000
green: Epicentral Distance : 36.158
green: Azimuth of Source : 127.603
green: 19 BRVK LHZ 2000 14 23:37:10.800 1.000 48000
green: 20 BRVK LHN 2000 14 23:37:10.800 1.000 48000
green: 21 BRVK LHE 2000 14 23:37:10.800 1.000 48000
green: Station: CASY -66.2792 110.5364 , Channels: 3
green: Channel: # 1 CASY LHZ 0.00000000 0.00000000
green: Channel: # 2 CASY LHN 180.000000 90.0000000
green: Channel: # 3 CASY LHE 270.000000 90.0000000
green: Epicentral Distance : 91.644
green: Azimuth of Source : -8.261
green: 22 CASY LHZ 2000 14 23:37:10.800 1.000 48000
green: 23 CASY LHN 2000 14 23:37:10.800 1.000 48000
green: 24 CASY LHE 2000 14 23:37:10.800 1.000 48000
green: Station: CCM 38.0557 -91.2446 , Channels: 3
green: Channel: # 1 CCM LHZ 0.00000000 0.00000000
green: Channel: # 2 CCM LHN 0.00000000 90.0000000
green: Channel: # 3 CCM LHE 90.0000000 90.0000000
green: Epicentral Distance : 115.783
green: Azimuth of Source : -12.703
green: 25 CCM LHZ 2000 14 23:37:10.800 1.000 48000
green: 26 CCM LHN 2000 14 23:37:10.800 1.000 48000
green: 27 CCM LHE 2000 14 23:37:10.800 1.000 48000
green: Station: TLY 51.6807 103.6438 , Channels: 3
green: Channel: # 1 TLY LHZ 0.00000000 0.00000000
green: Channel: # 2 TLY LHN 0.00000000 90.0000000
green: Channel: # 3 TLY LHE 90.0000000 90.0000000
green: Epicentral Distance : 26.308
green: Azimuth of Source : -175.417
green: 28 TLY LHZ 2000 14 23:37:10.800 1.000 48000
green: 29 TLY LHN 2000 14 23:37:10.800 1.000 48000
green: 30 TLY LHE 2000 14 23:37:10.800 1.000 48000

real 1m30.361s
user 0m1.101s
sys 0m0.014s

生成理论地震图

使用syndat即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(base) [shizhiyuan@localhost DEMO4]$ time syndat
============== Program syndat ==================
enter input CMT file name:
china_cmt_event
china_cmt_event
enter tensor type: 0 - moment, 1 - nodal plane 1, 2 - nodal plane 2
0
0
enter input dbname
green
green
enter output dbname
Syndat
Syndat
Enter output units: 0 [nm/s/s] 1 [nm/s] 2 [nm]
0
syndat: CMT solution:
syndat: Event: B011400F 2000 14 23: 37: 10.8, lat/lon = 25.39 101.40,
syndat: depth = 33.0 km, step = 1.000 sec, Duration = -2.3 sec,
syndat: M0 = 0.833E+25,
syndat: comp: -0.600E+24 -0.629E+25 0.689E+25 -0.185E+25 0.120E+24 -0.473E+25
syndat: plane1: 27. 78. -6. plane2: 118. 84.-168.
syndat: Selected moment tensor components:
syndat: -0.600E+24 -0.629E+25 0.689E+25 -0.185E+25 0.120E+24 -0.473E+25

syndat: Synthetic waveforms:
syndat: 1 ALE LHZ 1.000 8000
syndat: 2 ALE LHN 1.000 8000
syndat: 3 ALE LHE 1.000 8000
syndat: 4 ANMO LHZ 1.000 8000
syndat: 5 ANMO LH2 1.000 8000
syndat: 6 ANMO LH1 1.000 8000
syndat: 7 BAK BHZ 1.000 8000
syndat: 8 BAK BHN 1.000 8000
syndat: 9 BAK BHE 1.000 8000
syndat: 10 BDFB LHZ 1.000 8000
syndat: 11 BDFB LHN 1.000 8000
syndat: 12 BDFB LHE 1.000 8000
syndat: 13 BILL LHZ 1.000 8000
syndat: 14 BILL LHN 1.000 8000
syndat: 15 BILL LHE 1.000 8000
syndat: 16 BJT LHZ 1.000 8000
syndat: 17 BJT LHN 1.000 8000
syndat: 18 BJT LHE 1.000 8000
syndat: 19 BRVK LHZ 1.000 8000
syndat: 20 BRVK LHN 1.000 8000
syndat: 21 BRVK LHE 1.000 8000
syndat: 22 CASY LHZ 1.000 8000
syndat: 23 CASY LHN 1.000 8000
syndat: 24 CASY LHE 1.000 8000
syndat: 25 CCM LHZ 1.000 8000
syndat: 26 CCM LHN 1.000 8000
syndat: 27 CCM LHE 1.000 8000
syndat: 28 TLY LHZ 1.000 8000
syndat: 29 TLY LHN 1.000 8000
syndat: 30 TLY LHE 1.000 8000

real 0m23.119s
user 0m0.006s
sys 0m0.002s

将理论地震图转化为SAC格式

1
2
3
4
5
6
7
(base) [shizhiyuan@localhost DEMO4]$ time cucss2sac Syndat Syndat_SAC
Relation Syndat.origin does not exist. Event info is not included in SAC header.
Relation Syndat.site does not exist. Stations info is not included in SAC header.

real 0m0.006s
user 0m0.001s
sys 0m0.003s

补充

在这里发现相比于DEMO3,这里缺少了Syndat.site,Syndat.sitechan,Syndat.origin文件,因此缺失了台站和事件信息。

查看DEMO3的bash文件,发现运行green之后有这样的语句:

cp -p short.site green.site
cp -p short.sitechan green.sitechan
creat_origin china_cmt_event green

这三个语句创建了green的三类文件:.site,.sitechan和.origin。

同样的,在运行完Syndat之后也有语句

cp -p short.site Syndat.site
cp -p short.sitechan Syndat.sitechan
creat_origin china_cmt_event Syndat

补充之后,内容便完整了。